Tensor denoising with trend filtering

نویسندگان

چکیده

We extend the notion of trend filtering to tensors by considering $k\mathrm{th}$-order Vitali variation – a discretized version integral absolute value total derivative. prove adaptive $\ell^0$-rates and not-so-slow $\ell^1$-rates for tensor denoising with filtering. For $k={1,2,3,4}$ we that $d$-dimensional margin can be estimated at $\ell^0$-rate $n^{-1}$, up logarithmic terms, if underlying is product $(k-1)\mathrm{th}$-order polynomials on constant number hyperrectangles. general $k$ $\ell^1$-rate estimation $n^{- \frac{H(d)+2k-1}{2H(d)+2k-1}}$, where $H(d)$ $d\mathrm{th}$ harmonic number. Thanks an ANOVA-type decomposition apply these results lower dimensional margins bounds whole tensor. Our tools are interpolating bound effective sparsity $\ell^0$-rates, mesh grids and, in background, projection arguments Dalalyan, Hebiri, Lederer (2017).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Models with Trend Filtering

We consider additive models built with trend filtering, i.e., additive models whose components are each regularized by the (discrete) total variation of their (k+1)st (discrete) derivative, for a chosen integer k ≥ 0. This results in kth degree piecewise polynomial components, (e.g., k = 0 gives piecewise constant components, k = 1 gives piecewise linear, k = 2 gives piecewise quadratic, etc.)....

متن کامل

l1 Trend Filtering

The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed l1 trend filtering method substitutes a sum of absolute values (i.e., an l1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated ...

متن کامل

1 Trend Filtering

The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick–Prescott (H-P) filtering, a widely used method for trend estimation. The proposed !1 trend filtering method substitutes a sum of absolute values (i.e., !1 norm) for the sum of squares used in H-P filtering to penalize variations in the estimated tre...

متن کامل

Trend Filtering on Graphs

Yu-Xiang Wang1,2 [email protected] James Sharpnack3 [email protected] Alexander J. Smola1,4 [email protected] Ryan J. Tibshirani1,2 [email protected] 1 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213 2 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 3 Mathematics Department, University of California at San Diego, La Jolla, CA 10280 ...

متن کامل

Denoising based on spatial filtering.

We present a method for removing unwanted components of biological origin from neurophysiological recordings such as magnetoencephalography (MEG), electroencephalography (EEG), or multichannel electrophysiological or optical recordings. A spatial filter is designed to partition recorded activity into stimulus-related and stimulus-unrelated components, based on a criterion of stimulus-evoked rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical statistics and learning

سال: 2022

ISSN: ['2520-2316', '2520-2324']

DOI: https://doi.org/10.4171/msl/26